DeepSeek+SpringAI实战AI家庭医生应用-从开发到部署,打造智能医疗助手
DeepSeek+SpringAI实战AI家庭医生应用-从开发到部署,打造智能医疗助手
DeepSeek+SpringAI实战AI家庭医生应用-从开发到部署,打造智能医疗助手
FastAPI路由管理APIRouter案例实战 需求背景 代码混乱问题, 未使用路由管理(所有接口堆在main.py中) 所有接口混杂在一个文件中,随着功能增加,文件会变得臃肿难维护。
LLM大模型存储记忆功能介绍和应用场景 需求背景:为什么需要存储记忆功能 长对话上下文遗忘问题
大模型智能体之CoT思维链和ReAct推理行动 需求背景:为什么需要CoT/ReAct? 问题场景:传统大模型直接输出结果,但复杂任务(数学推理/多步骤决策)易出错 核心需求:让模型展示思考过程 + 动态调整策略
大模型LLM调用链路分析和LangSmith介绍 需求背景 开发基于大语言模型(LLM)的智能体时,会遇到以下问题: 调试困难 LLM 的输出不可预测,难以追踪中间步骤(如思维链、工具调用)。 错误定位耗时(如工具返回异常,但不知道具体哪一步出错)。
大模型Agent智能体介绍和应用场景 什么是智能体Agent 是一种具备自主决策能力的AI系统,通过感知环境、分析信息、调用工具、执行动作的闭环过程完成任务 智能体 = 大语言模型(LLM) + 工具(Tools) + 记忆(Memory)
什么是`Runnable`接口 是LangChain框架中所有组件的核心抽象接口,用于封装可执行的逻辑单元(如模型调用、数据处理、API集成等)
什么是Retriever 统一接口:标准化检索流程,无论数据来源如何,最终输出`Document`对象列表。 多源混合检索:支持同时查询向量库、传统数据库和搜索引擎【提高召回率】
安装 Milvus Python SDK, 支持 Python、Node.js、GO 和 Java SDK。 建议安装与所安装 Milvus 服务器版本相匹配的 PyMilvus 版本
向量数据库介绍和技术选型思考 为什么要用向量数据库,不能用MySQL存储 文档块通过嵌入模型处理后得到对应向量,下一步就是将向量存储到数据库中,方便后续进行检索使用