项目
博客
文档
归档
资源链接
关于我
项目
博客
文档
归档
资源链接
关于我
Java8 Stream:集合的筛选、归约、分组、聚合
2020-11-19
·
云深i不知处
·
原创
·
集合
·
本文共 3,083个字,预计阅读需要 11分钟。
> 作者:[云深i不知处](http://blog.csdn.net/mu_wind/article/details/109516995) ![](https://img-blog.csdnimg.cn/2020110911333574.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L211X3dpbmQ=,size_16,color_FFFFFF,t_70#pic_center) 先贴上几个案例,水平高超的同学可以挑战一下: 1. 从员工集合中筛选出salary大于8000的员工,并放置到新的集合里。 2. 统计员工的最高薪资、平均薪资、薪资之和。 3. 将员工按薪资从高到低排序,同样薪资者年龄小者在前。 4. 将员工按性别分类,将员工按性别和地区分类,将员工按薪资是否高于8000分为两部分。 用传统的迭代处理也不是很难,但代码就显得冗余了,跟Stream相比高下立判。 ## 1 Stream概述 Java 8 是一个非常成功的版本,这个版本新增的`Stream`,配合同版本出现的 `Lambda` ,给我们操作集合(Collection)提供了极大的便利。 那么什么是`Stream`? > `Stream`将要处理的元素集合看作一种流,在流的过程中,借助`Stream API`对流中的元素进行操作,比如:筛选、排序、聚合等。 `Stream`可以由数组或集合创建,对流的操作分为两种: 1. 中间操作,每次返回一个新的流,可以有多个。 2. 终端操作,每个流只能进行一次终端操作,终端操作结束后流无法再次使用。终端操作会产生一个新的集合或值。 另外,`Stream`有几个特性: 1. stream不存储数据,而是按照特定的规则对数据进行计算,一般会输出结果。 2. stream不会改变数据源,通常情况下会产生一个新的集合或一个值。 3. stream具有延迟执行特性,只有调用终端操作时,中间操作才会执行。 ## 2 Stream的创建 `Stream`可以通过集合数组创建。 1、通过 `java.util.Collection.stream()` 方法用集合创建流 ```java List
list = Arrays.asList("a", "b", "c"); // 创建一个顺序流 Stream
stream = list.stream(); // 创建一个并行流 Stream
parallelStream = list.parallelStream(); ``` 2、使用`java.util.Arrays.stream(T[] array)`方法用数组创建流 ```java int[] array={1,3,5,6,8}; IntStream stream = Arrays.stream(array); ``` 3、使用`Stream`的静态方法:`of()、iterate()、generate()` ```java Stream
stream = Stream.of(1, 2, 3, 4, 5, 6); Stream
stream2 = Stream.iterate(0, (x) -> x + 3).limit(4); stream2.forEach(System.out::println); // 0 2 4 6 8 10 Stream
stream3 = Stream.generate(Math::random).limit(3); stream3.forEach(System.out::println); ``` 输出结果: > 0 3 6 9 > 0.6796156909271994 > 0.1914314208854283 > 0.8116932592396652 **`stream`和`parallelStream`的简单区分:** `stream`是顺序流,由主线程按顺序对流执行操作,而`parallelStream`是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。例如筛选集合中的奇数,两者的处理不同之处: ![在这里插入图片描述](https://img-blog.csdnimg.cn/20201106164400889.png) 如果流中的数据量足够大,并行流可以加快处速度。 除了直接创建并行流,还可以通过`parallel()`把顺序流转换成并行流: ```java Optional
findFirst = list.stream().parallel().filter(x->x>6).findFirst(); ``` ## 3 Stream的使用 在使用stream之前,先理解一个概念:`Optional` 。 > `Optional`类是一个可以为`null`的容器对象。如果值存在则`isPresent()`方法会返回`true`,调用`get()`方法会返回该对象。 > 更详细说明请见:[菜鸟教程Java 8 Optional类](https://www.runoob.com/java/java8-optional-class.html) ### 案例使用的员工类 这是后面案例中使用的员工类: ```java List
personList = new ArrayList
(); personList.add(new Person("Tom", 8900, "male", "New York")); personList.add(new Person("Jack", 7000, "male", "Washington")); personList.add(new Person("Lily", 7800, "female", "Washington")); personList.add(new Person("Anni", 8200, "female", "New York")); personList.add(new Person("Owen", 9500, "male", "New York")); personList.add(new Person("Alisa", 7900, "female", "New York")); class Person { private String name; // 姓名 private int salary; // 薪资 private int age; // 年龄 private String sex; //性别 private String area; // 地区 // 构造方法 public Person(String name, int salary, int age,String sex,String area) { this.name = name; this.salary = salary; this.age = age; this.sex = sex; this.area = area; } // 省略了get和set,请自行添加 } ``` ### 3.1 遍历/匹配(foreach/find/match) `Stream`也是支持类似集合的遍历和匹配元素的,只是`Stream`中的元素是以`Optional`类型存在的。`Stream`的遍历、匹配非常简单。 ![在这里插入图片描述](https://img-blog.csdnimg.cn/2020110914450139.png) ```java // import已省略,请自行添加,后面代码亦是 public class StreamTest { public static void main(String[] args) { List
list = Arrays.asList(7, 6, 9, 3, 8, 2, 1); // 遍历输出符合条件的元素 list.stream().filter(x -> x > 6).forEach(System.out::println); // 匹配第一个 Optional
findFirst = list.stream().filter(x -> x > 6).findFirst(); // 匹配任意(适用于并行流) Optional
findAny = list.parallelStream().filter(x -> x > 6).findAny(); // 是否包含符合特定条件的元素 boolean anyMatch = list.stream().anyMatch(x -> x < 6); System.out.println("匹配第一个值:" + findFirst.get()); System.out.println("匹配任意一个值:" + findAny.get()); System.out.println("是否存在大于6的值:" + anyMatch); } } ``` ### 3.2 筛选(filter) 筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。 ![在这里插入图片描述](https://img-blog.csdnimg.cn/20201109144706541.jpg) **案例一:筛选出`Integer`集合中大于7的元素,并打印出来** ```java public class StreamTest { public static void main(String[] args) { List
list = Arrays.asList(6, 7, 3, 8, 1, 2, 9); Stream
stream = list.stream(); stream.filter(x -> x > 7).forEach(System.out::println); } } ``` 预期结果: > 8 9 **案例二: 筛选员工中工资高于8000的人,并形成新的集合。** 形成新集合依赖`collect`(收集),后文有详细介绍。 ```java public class StreamTest { public static void main(String[] args) { List
personList = new ArrayList
(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); List
fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName) .collect(Collectors.toList()); System.out.print("高于8000的员工姓名:" + fiterList); } } ``` 运行结果: > 高于8000的员工姓名:[Tom, Anni, Owen] ### 3.3 聚合(max/min/count) `max`、`min`、`count`这些字眼你一定不陌生,没错,在mysql中我们常用它们进行数据统计。Java stream中也引入了这些概念和用法,极大地方便了我们对集合、数组的数据统计工作。 ![在这里插入图片描述](https://img-blog.csdnimg.cn/20201109145217354.png) **案例一:获取`String`集合中最长的元素。** ```java public class StreamTest { public static void main(String[] args) { List
list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd"); Optional
max = list.stream().max(Comparator.comparing(String::length)); System.out.println("最长的字符串:" + max.get()); } } ``` 输出结果: > 最长的字符串:weoujgsd **案例二:获取`Integer`集合中的最大值。** ```java public class StreamTest { public static void main(String[] args) { List
list = Arrays.asList(7, 6, 9, 4, 11, 6); // 自然排序 Optional
max = list.stream().max(Integer::compareTo); // 自定义排序 Optional
max2 = list.stream().max(new Comparator
() { @Override public int compare(Integer o1, Integer o2) { return o1.compareTo(o2); } }); System.out.println("自然排序的最大值:" + max.get()); System.out.println("自定义排序的最大值:" + max2.get()); } } ``` 输出结果: > 自然排序的最大值:11 > 自定义排序的最大值:11 **案例三:获取员工工资最高的人。** ```java public class StreamTest { public static void main(String[] args) { List
personList = new ArrayList
(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); Optional
max = personList.stream().max(Comparator.comparingInt(Person::getSalary)); System.out.println("员工工资最大值:" + max.get().getSalary()); } } ``` 输出结果: > 员工工资最大值:9500 **案例四:计算`Integer`集合中大于6的元素的个数。** ```java import java.util.Arrays; import java.util.List; public class StreamTest { public static void main(String[] args) { List
list = Arrays.asList(7, 6, 4, 8, 2, 11, 9); long count = list.stream().filter(x -> x > 6).count(); System.out.println("list中大于6的元素个数:" + count); } } ``` 输出结果: > list中大于6的元素个数:4 ### 3.4 映射(map/flatMap) 映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为`map`和`flatMap`: - `map`:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。 - `flatMap`:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。 ![在这里插入图片描述](https://img-blog.csdnimg.cn/20201109145252340.jpg) ![在这里插入图片描述](https://img-blog.csdnimg.cn/2020110914550762.jpg) **案例一:英文字符串数组的元素全部改为大写。整数数组每个元素+3。** ```java public class StreamTest { public static void main(String[] args) { String[] strArr = { "abcd", "bcdd", "defde", "fTr" }; List
strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList()); List
intList = Arrays.asList(1, 3, 5, 7, 9, 11); List
intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList()); System.out.println("每个元素大写:" + strList); System.out.println("每个元素+3:" + intListNew); } } ``` 输出结果: > 每个元素大写:[ABCD, BCDD, DEFDE, FTR] > 每个元素+3:[4, 6, 8, 10, 12, 14] **案例二:将员工的薪资全部增加1000。** ```java public class StreamTest { public static void main(String[] args) { List
personList = new ArrayList
(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); // 不改变原来员工集合的方式 List
personListNew = personList.stream().map(person -> { Person personNew = new Person(person.getName(), 0, 0, null, null); personNew.setSalary(person.getSalary() + 10000); return personNew; }).collect(Collectors.toList()); System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary()); System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary()); // 改变原来员工集合的方式 List
personListNew2 = personList.stream().map(person -> { person.setSalary(person.getSalary() + 10000); return person; }).collect(Collectors.toList()); System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary()); System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary()); } } ``` 输出结果: > 一次改动前:Tom–>8900 > 一次改动后:Tom–>18900 > 二次改动前:Tom–>18900 > 二次改动后:Tom–>18900 **案例三:将两个字符数组合并成一个新的字符数组。** ```java public class StreamTest { public static void main(String[] args) { List
list = Arrays.asList("m,k,l,a", "1,3,5,7"); List
listNew = list.stream().flatMap(s -> { // 将每个元素转换成一个stream String[] split = s.split(","); Stream
s2 = Arrays.stream(split); return s2; }).collect(Collectors.toList()); System.out.println("处理前的集合:" + list); System.out.println("处理后的集合:" + listNew); } } ``` 输出结果: > 处理前的集合:[m-k-l-a, 1-3-5] > 处理后的集合:[m, k, l, a, 1, 3, 5] ### 3.5 归约(reduce) 归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。 ![在这里插入图片描述](https://img-blog.csdnimg.cn/20201109145706497.png#pic_left) **案例一:求`Integer`集合的元素之和、乘积和最大值。** ```java public class StreamTest { public static void main(String[] args) { List
list = Arrays.asList(1, 3, 2, 8, 11, 4); // 求和方式1 Optional
sum = list.stream().reduce((x, y) -> x + y); // 求和方式2 Optional
sum2 = list.stream().reduce(Integer::sum); // 求和方式3 Integer sum3 = list.stream().reduce(0, Integer::sum); // 求乘积 Optional
product = list.stream().reduce((x, y) -> x * y); // 求最大值方式1 Optional
max = list.stream().reduce((x, y) -> x > y ? x : y); // 求最大值写法2 Integer max2 = list.stream().reduce(1, Integer::max); System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3); System.out.println("list求积:" + product.get()); System.out.println("list求和:" + max.get() + "," + max2); } } ``` 输出结果: > list求和:29,29,29 > list求积:2112 > list求和:11,11 **案例二:求所有员工的工资之和和最高工资。** ```java public class StreamTest { public static void main(String[] args) { List
personList = new ArrayList
(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); // 求工资之和方式1: Optional
sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum); // 求工资之和方式2: Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), (sum1, sum2) -> sum1 + sum2); // 求工资之和方式3: Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum); // 求最高工资方式1: Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(), Integer::max); // 求最高工资方式2: Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(), (max1, max2) -> max1 > max2 ? max1 : max2); System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3); System.out.println("最高工资:" + maxSalary + "," + maxSalary2); } } ``` 输出结果: > 工资之和:49300,49300,49300 > 最高工资:9500,9500 ### 3.6 收集(collect) `collect`,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。 > `collect`主要依赖`java.util.stream.Collectors`类内置的静态方法。 #### 3.6.1 归集(toList/toSet/toMap) 因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。`toList`、`toSet`和`toMap`比较常用,另外还有`toCollection`、`toConcurrentMap`等复杂一些的用法。 下面用一个案例演示`toList`、`toSet`和`toMap`: ```java public class StreamTest { public static void main(String[] args) { List
list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20); List
listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList()); Set
set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet()); List
personList = new ArrayList
(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); Map, Person> map = personList.stream().filter(p -> p.getSalary() > 8000) .collect(Collectors.toMap(Person::getName, p -> p)); System.out.println("toList:" + listNew); System.out.println("toSet:" + set); System.out.println("toMap:" + map); } } ``` 运行结果: > toList:[6, 4, 6, 6, 20] > toSet:[4, 20, 6] > toMap:{Tom=mutest.Person@5fd0d5ae, Anni=mutest.Person@2d98a335} #### 3.6.2 统计(count/averaging) `Collectors`提供了一系列用于数据统计的静态方法: - 计数:`count` - 平均值:`averagingInt`、`averagingLong`、`averagingDouble` - 最值:`maxBy`、`minBy` - 求和:`summingInt`、`summingLong`、`summingDouble` - 统计以上所有:`summarizingInt`、`summarizingLong`、`summarizingDouble` **案例:统计员工人数、平均工资、工资总额、最高工资。** ```java public class StreamTest { public static void main(String[] args) { List
personList = new ArrayList
(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); // 求总数 Long count = personList.stream().collect(Collectors.counting()); // 求平均工资 Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary)); // 求最高工资 Optional
max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare)); // 求工资之和 Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary)); // 一次性统计所有信息 DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary)); System.out.println("员工总数:" + count); System.out.println("员工平均工资:" + average); System.out.println("员工工资总和:" + sum); System.out.println("员工工资所有统计:" + collect); } } ``` 运行结果: > 员工总数:3 > 员工平均工资:7900.0 > 员工工资总和:23700 > 员工工资所有统计:DoubleSummaryStatistics{count=3, sum=23700.000000,min=7000.000000, average=7900.000000, max=8900.000000} #### 3.6.3 分组(partitioningBy/groupingBy) - 分区:将`stream`按条件分为两个`Map`,比如员工按薪资是否高于8000分为两部分。 - 分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。 ![在这里插入图片描述](https://img-blog.csdnimg.cn/20201109145807450.png#pic_left) **案例:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组** ```java public class StreamTest { public static void main(String[] args) { List
personList = new ArrayList
(); personList.add(new Person("Tom", 8900, "male", "New York")); personList.add(new Person("Jack", 7000, "male", "Washington")); personList.add(new Person("Lily", 7800, "female", "Washington")); personList.add(new Person("Anni", 8200, "female", "New York")); personList.add(new Person("Owen", 9500, "male", "New York")); personList.add(new Person("Alisa", 7900, "female", "New York")); // 将员工按薪资是否高于8000分组 Map
> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000)); // 将员工按性别分组 Map
> group = personList.stream().collect(Collectors.groupingBy(Person::getSex)); // 将员工先按性别分组,再按地区分组 Map
>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea))); System.out.println("员工按薪资是否大于8000分组情况:" + part); System.out.println("员工按性别分组情况:" + group); System.out.println("员工按性别、地区:" + group2); } } ``` 输出结果: ```java 员工按薪资是否大于8000分组情况:{false=[mutest.Person@2d98a335, mutest.Person@16b98e56, mutest.Person@7ef20235], true=[mutest.Person@27d6c5e0, mutest.Person@4f3f5b24, mutest.Person@15aeb7ab]} 员工按性别分组情况:{female=[mutest.Person@16b98e56, mutest.Person@4f3f5b24, mutest.Person@7ef20235], male=[mutest.Person@27d6c5e0, mutest.Person@2d98a335, mutest.Person@15aeb7ab]} 员工按性别、地区:{female={New York=[mutest.Person@4f3f5b24, mutest.Person@7ef20235], Washington=[mutest.Person@16b98e56]}, male={New York=[mutest.Person@27d6c5e0, mutest.Person@15aeb7ab], Washington=[mutest.Person@2d98a335]}} ``` #### 3.6.4 接合(joining) `joining`可以将strea中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。 ```java public class StreamTest { public static void main(String[] args) { List
personList = new ArrayList
(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(",")); System.out.println("所有员工的姓名:" + names); List
list = Arrays.asList("A", "B", "C"); String string = list.stream().collect(Collectors.joining("-")); System.out.println("拼接后的字符串:" + string); } } ``` 运行结果: > 所有员工的姓名:Tom,Jack,Lily > 拼接后的字符串:A-B-C #### 3.6.5 归约(reducing) `Collectors`类提供的`reducing`方法,相比于`stream`本身的`reduce`方法,增加了对自定义归约的支持。 ```java public class StreamTest { public static void main(String[] args) { List
personList = new ArrayList
(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); // 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子) Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000))); System.out.println("员工扣税薪资总和:" + sum); // stream的reduce Optional
sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum); System.out.println("员工薪资总和:" + sum2.get()); } } ``` 运行结果: > 员工扣税薪资总和:8700 > 员工薪资总和:23700 ### 3.7 排序(sorted) sorted,中间操作。有两种排序: - sorted():自然排序,流中元素需实现Comparable接口 - sorted(Comparator com):Comparator排序器自定义排序 **案例:将员工按工资由高到低(工资一样则按年龄由大到小)排序** ```java public class StreamTest { public static void main(String[] args) { List
personList = new ArrayList
(); personList.add(new Person("Sherry", 9000, 24, "female", "New York")); personList.add(new Person("Tom", 8900, 22, "male", "Washington")); personList.add(new Person("Jack", 9000, 25, "male", "Washington")); personList.add(new Person("Lily", 8800, 26, "male", "New York")); personList.add(new Person("Alisa", 9000, 26, "female", "New York")); // 按工资升序排序(自然排序) List
newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName) .collect(Collectors.toList()); // 按工资倒序排序 List
newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed()) .map(Person::getName).collect(Collectors.toList()); // 先按工资再按年龄升序排序 List
newList3 = personList.stream() .sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName) .collect(Collectors.toList()); // 先按工资再按年龄自定义排序(降序) List
newList4 = personList.stream().sorted((p1, p2) -> { if (p1.getSalary() == p2.getSalary()) { return p2.getAge() - p1.getAge(); } else { return p2.getSalary() - p1.getSalary(); } }).map(Person::getName).collect(Collectors.toList()); System.out.println("按工资升序排序:" + newList); System.out.println("按工资降序排序:" + newList2); System.out.println("先按工资再按年龄升序排序:" + newList3); System.out.println("先按工资再按年龄自定义降序排序:" + newList4); } } ``` 运行结果: > 按工资自然排序:[Lily, Tom, Sherry, Jack, Alisa] > 按工资降序排序:[Sherry, Jack, Alisa,Tom, Lily] > 先按工资再按年龄自然排序:[Sherry, Jack, Alisa, Tom, Lily] > 先按工资再按年龄自定义降序排序:[Alisa, Jack, Sherry, Tom, Lily] ### 3.8 提取/组合 流也可以进行合并、去重、限制、跳过等操作。 ![在这里插入图片描述](https://img-blog.csdnimg.cn/20201109150012790.jpg) ![在这里插入图片描述](https://img-blog.csdnimg.cn/20201109150001270.jpg) ![在这里插入图片描述](https://img-blog.csdnimg.cn/20201109145946301.jpg) ```java public class StreamTest { public static void main(String[] args) { String[] arr1 = { "a", "b", "c", "d" }; String[] arr2 = { "d", "e", "f", "g" }; Stream
stream1 = Stream.of(arr1); Stream
stream2 = Stream.of(arr2); // concat:合并两个流 distinct:去重 List
newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList()); // limit:限制从流中获得前n个数据 List
collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList()); // skip:跳过前n个数据 List
collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList()); System.out.println("流合并:" + newList); System.out.println("limit:" + collect); System.out.println("skip:" + collect2); } } ``` 运行结果: > 流合并:[a, b, c, d, e, f, g] > limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19] > skip:[3, 5, 7, 9, 11]